CFU-S(11) activity does not localize solely with the aorta in the aorta-gonad-mesonephros region.

نویسندگان

  • M F de Bruijn
  • M C Peeters
  • T Luteijn
  • P Visser
  • N A Speck
  • E Dzierzak
چکیده

The aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site in the midgestation mouse conceptus and first contains colony-forming units-spleen day 11 (CFU-S(11)) at embryonic day 10 (E10). Because CFU-S(11) activity is present in the AGM region before the onset of hematopoietic stem cell (HSC) activity, CFU-S(11) activity in the complex developing vascular and urogenital regions of the AGM was localized. From E10 onward, CFU-S(11) activity is associated with the aortic vasculature, and is found also in the urogenital ridges (UGRs). Together with data obtained from organ explant cultures, in which up to a 16-fold increase in CFU-S(11) activity was observed, it was determined that CFU-S(11) can be increased autonomously both in vascular sites and in UGRs. Furthermore, CFU-S(11) activity is present in vitelline and umbilical vessels. This, together with the presence of CFU-S(11) in the UGRs 2 days before HSC activity, suggests both temporally and spatially distinct emergent sources of CFU-S(11). (Blood. 2000;96:2902-2904)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief report CFU-S11 activity does not localize solely with the aorta in the aorta-gonad-mesonephros region

The aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site in the midgestation mouse conceptus and first contains colony-forming units–spleen day 11 (CFU-S11) at embryonic day 10 (E10). Because CFU-S11 activity is present in the AGM region before the onset of hematopoietic stem cell (HSC) activity, CFU-S11 activity in the complex developing vascular and urogenital regions of the AG...

متن کامل

Interleukin-3 promotes hemangioblast development in mouse aorta-gonad-mesonephros region.

BACKGROUND The hemangioblast is a bi-potential precursor cell with the capacity to differentiate into hematopoietic and vascular cells. In mouse E7.0-7.5 embryos, the hemangioblast can be identified by a clonal blast colony-forming cell (BL-CFC) assay or single cell OP9 co-culture. However, the ontogeny of the hemangioblast in mid-gestation embryos is poorly defined. DESIGN AND METHODS The BL...

متن کامل

Dlk1 is a negative regulator of emerging hematopoietic stem and progenitor cells.

The first mouse adult-repopulating hematopoietic stem cells emerge in the aorta-gonad-mesonephros region at embryonic day (E) 10.5. Their numbers in this region increase thereafter and begin to decline at E12.5, thus pointing to the possible existence of both positive and negative regulators of emerging hematopoietic stem cells. Our recent expression analysis of the aorta-gonad-mesonephros regi...

متن کامل

Development of hematopoietic stem cell activity in the mouse embryo.

The precise time of appearance of the first hematopoietic stem cell activity in the developing mouse embryo is unknown. Recently the aorta-gonad-mesonephros region of the developing mouse embryo has been shown to possess hematopoietic colony-forming activity (CFU-S) in irradiated recipient mice. To determine whether the mouse embryo possesses definitive hematopoietic stem cell activity in the a...

متن کامل

Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells.

There is controversy as to whether murine definitive hematopoiesis originates from yolk sac (YS) or the intraembryonic region. This study reports the generation of definitive hematopoietic stem cells (HSCs) from both early YS and intraembryonic paraaortic splanchnopleures (P-Sp) on AGM-S3 stromal cells derived from the aorta-gonad-mesonephros (AGM) region at 10.5 days post coitum (dpc). YS and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 96 8  شماره 

صفحات  -

تاریخ انتشار 2000